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Why not walk faster?
James Richard Usherwood*

Structure and Motion Laboratory, The Royal Veterinary College,
University of London, North Mymms, Herts AL9 7TA, UK
* ( jusherwood@rvc.ac.uk)

Bipedal walking following inverted pendulum
mechanics is constrained by two requirements:
sufficient kinetic energy for the vault over mid-
stance and sufficient gravity to provide the
centripetal acceleration required for the arc of
the body about the stance foot. While the accel-
eration condition identifies a maximum walking
speed at a Froude number of 1, empirical
observation indicates favoured walk–run tran-
sition speeds at a Froude number around 0.5 for
birds, humans and humans under manipulated
gravity conditions. In this study, I demonstrate
that the risk of ‘take-off ’ is greatest at the
extremes of stance. This is because before and
after kinetic energy is converted to potential,
velocities (and so required centripetal accelera-
tions) are highest, while concurrently the com-
ponent of gravity acting in line with the leg is
least. Limitations to the range of walking vel-
ocity and stride angle are explored. At walking
speeds approaching a Froude number of 1,
take-off is only avoidable with very small steps.
With realistic limitations on swing-leg fre-
quency, a novel explanation for the walk–run
transition at a Froude number of 0.5 is shown.

Keywords: walk; inverted pendulum; run; transition;
biped

1. INTRODUCTION
Bipedal walking fits a mechanical description as an
‘inverted pendulum’ (figure 1), in which the body’s
kinetic energy turns to potential energy at midstance
and is returned as kinetic energy as the body falls
during the second half of stance (Cavagna et al.
1977); this is the mechanical definition of walking.
Alternatively, walking can be defined as locomotion
in which at least one foot is always in contact with the
ground (Hildebrand 1985). These two definitions for
walking can be used to determine two mechanical
requirements for walking and may be used to explore
speed and leg angle (or step length) conditions under
which walking as an inverted pendulum is possible.
The mechanical definition of walking puts minimum
speed constraints on walking, as there must be
sufficient kinetic energy to drive the vault over the
slowest and highest position at midstance. The
requirement that contact should be maintained with
the ground places upper limits on walking speed.
As the body vaults over, or around, the foot, it must
experience a sufficient acceleration towards the foot
(centripetal) to result in the changes in body-heading
inherent in travelling around an arc. As the foot does
not clamp on to the ground, the leg cannot oppose
tension forces. Thus, when the required centripetal
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acceleration of the body is not provided by gravity, a
‘take-off ’ condition is reached and the inverted
pendulum mechanism of walking fails: the foot is
either pulled off the ground (first half of stance) or
dragged along the ground (second half). This con-
dition for walking has been described (see Alexander
1989), considering either the forces or the accelera-
tions applicable to midstance, using the dimensionless
Froude number Fr

Fr Z
‘centrifugal force’

weight
Z

mV 2=l

mg
Z

V 2

gl
!1; (1.1)

where m is the mass, l the leg length, g the accelera-
tion due to gravity and V the velocity. The obser-
vations that bipeds over a wide range of sizes
(including birds (Gatesy & Biewener 1991) and
humans) and humans under a range of manipulated
gravity conditions (Kram et al. 1997) all elect to
change gait from a walk to a run at Frz0.5
substantiate suggestions that this Froude number
represents a general mechanical limitation; however,
the limiting value at midstance should be FrZ1.
While models of walking incorporating limb compli-
ance (Alexander 1992) can account for this, the
required input parameters are somewhat specific.
Kinematic factors have been related to the walk–run
transition in humans and structural limits or fatigue
have been suggested (Minetti et al. 1994; Hreljac
1995). However, ‘a simple mechanical model that
predicts a transition at a Froude number of 0.5
remains elusive’ (Kram et al. 1997).

In this paper I explore the implications of inverted
pendulum mechanics on stance. I follow the extreme
simplification of the inverted pendulum using a
‘compass gait’ model (following Alexander 1977): a
point mass vaults over a rigid, massless leg and one
leg (and only one leg) maintains contact with the foot
placement on the ground at any time—resulting in a
duty factor of 0.5. I define the range of velocities and
step lengths (or step angles) in which walking can be
maintained, and identify the influence of step fre-
quency and swing-leg mechanics as a drive towards
walk–run transition at Fr!1.
2. METHODS
The requirement of ‘take-off’ avoidance, when the gravitational
acceleration g acting on the mass no longer exceeds the centripetal
acceleration required to keep the limb of length l on the ground,
can be expressed at midstance as

V 2

l
%g; (2.1)

equivalent to expression (1.1). However, in the case of a simple
inverted pendulum the risk of take-off is greater at the limits of
stance; indeed, at midstance the foot placement should be most
secure (figure 1). This is because (i) the velocity of the mass is higher
both before the kinetic energy is converted to potential and after the
potential energy has been reconverted to kinetic during the vault and
(ii) the component of gravity in line with the leg is reduced when the
leg moves from a vertical stance. Giving velocity in terms of angular
velocity and leg length (uZV/l ), the non-take-off condition can be
expressed for any angle of stance leg from vertical f as

u2l%g cosðfÞ: (2.2)

Considering an ideal inverted pendulum as the mass vaults over the
foot, no mechanical energy ME is lost

ME ZPECKE ZmghC
1

2
Iu2 Z constant: (2.3)
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Figure 1. Stance during the ‘compass gait’ model of
walking. The point mass (black circle) vaults over the
massless, rigid leg of length l, following an arc about the
leg’s connection with the ground. The components of
acceleration acting in line with the leg are indicated for two
positions: (a) midstance, or fZ0, when the velocity of the
mass is at a minimum for the step (Vmin) and gravity acts
directly in line with the leg and (b) at the extreme of leg
angle fZKF or F, when the velocity of the mass is highest
for the step (Vmax) and a smaller component of gravity acts
along the leg. The conditions for successful inverted
pendulum walking are considered broken if there is insuffi-
cient energy for the vault over midstance or if the
centripetal acceleration required to keep the leg arcing
around the foot cannot be provided by gravity.
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Taking the ground as the datum for the potential energy, height h is
given as a function of l and f. For a point mass, the second moment
of mass I for the body about the foot is ml 2. Thus,

ME Zmgl cos f
� �

C
1

2
ml2u2 Z constant; (2.4)

and the angular velocity uf can be calculated for any value of f by

uf Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ME

m
Kgl cosðfÞ

� �
l2

s
: (2.5)

In order to determine the change in time (dt) spent travelling across
each small change in leg angle (df), a numerical calculation was
made for each leg angle (simple analytical solutions are limited to
small angles)

dt Z
df

uf

: (2.6)

The period T for the vault from fZKF to fZCF was calculated
as the sum of all dt. The horizontal distance travelled over this
period, the step length, is 2l sin(F). The mean horizontal velocity Vx

was calculated, with the numerical calculation of the step period,
from

Vx Z
2l sin Fð Þ

T
: (2.7)
Biol. Lett. (2005)
The inverse of step period is the step frequency f. Given that one and
only one leg is in contact with the ground at any time, step frequency
also applies to the frequency required for the swing leg. The time
taken for an inverted pendulum to travel over the step angle was
calculated by the method described above. This must equate to the
length of time required for the swing leg to get into place for the next
step.

(a) An analytical limit to stride angle

An analytical expression can be found for the maximum step angle
F possible before ‘take-off’ conditions are exceeded. This angle
occurs when the mean horizontal velocity of the walker is as slow as
possible but still allows the vault over midstance—when the velocity
and kinetic energy at the top of the stance approaches zero. As the
inverted pendulum tips over the highest point, the drop in potential
energy results in an increase in kinetic energy and velocity (from
conservation of mechanical energy)

DPE Zmglð1KcosðFÞÞZ
1

2
mV 2: (2.8)

Thus, the non-take-off condition loses both length and mass terms

V 2

l
Z2gð1KcosðFÞÞ%g cosðFÞ: (2.9)

Gravity also cancels; the angle condition simplifies to

F%cosK1 2

3

� �
: (2.10)

Therefore, the maximum possible step angle for a passive inverted
pendulum vault, while avoiding take-off conditions, is 48.2 degrees.
This is also the angle (counting ‘upright’ as 08) at which a toppling
chimney would change from a structure experiencing compression
to a structure experiencing tension.
3. RESULTS AND DISCUSSION
The limiting conditions for walking are presented for
an inverted pendulum of a leg length of 1 m under
gravity of 9.81 m sK2 (figure 2a). The low speed limit
for walking, due to the requirement of sufficient
kinetic energy to power the vault over the leg, is
indicated by (i): the slowest walking speeds are only
achievable with small step lengths and low step
frequencies. Beyond 0.56 m sK1, the maximum
potential step length reduces and the frequency
requirement for any given step length increases. The
take-off condition prohibits large step angles at higher
speeds both because of the higher velocities at the
extremes of stance and the reduced component of
gravity in line with the leg. Take-off can be avoided at
highest speeds only with small step lengths. However,
this necessarily results in high step and swing-leg
frequencies. Walking at high Froude numbers and the
associated high step frequencies is unappealing to
humans. Bertram & Ruina (2001) report step length,
speed and step frequency relationships for men of
appropriate leg length and find conditions above
2.2 m sK1, 2.5 Hz and 0.9 m step length (figure 2a)
are avoided for treadmill and across-ground loco-
motion. The model shows that the relationship
between walking step length, frequency and speed is
constrained by take-off conditions even at speeds
considerably below a Froude number of 1. If humans
are unwilling to swing their legs at above 2–3 Hz, they
will not be able to achieve inverted-pendulum walking
above 2.3–2.6 m sK1.

In order to view these results in a more general
context, it is helpful to normalize the values.
Mean horizontal velocity thus becomes the non-
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Figure 2. Limiting parameters for walking as an inverted pendulum with sufficient energy for the vault past midstance (i) but
without ‘take-off’ (ii). (a) Values appropriate for a human walking on Earth (lZ1 m, gZ9.81 m sK2). High walking speeds
can only be achieved with low step lengths and high step frequencies. An approximate upper limit to comfortable walking
speed for men is indicated by a circle. In non-dimensionalized form (b), the step frequency f̂ is the step frequency
normalized by the frequency of a pendulum of length l swinging over small angles. The rectangle bounds the range of values
relating to the walk–run transition for seven species of ground-dwelling bird ranging from 0.045–90 kg (where F is taken as
half of the stance leg excursion angle published in Gatesy & Biewener (1991)). The largest possible step angle, 48.28, is
indicated but is achievable at only one velocity. Lower leg angles are required for higher walking speeds; however, this
requires higher step frequencies. The combination of avoidance of take-off and a limitation to swing-leg frequency provides
realistic limitations to inverted pendulum style walking speeds and may account for the consistent preferred speed of the
walk–run transition in bipeds of FrZ0.5 (vertical dotted lines).
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dimensionalized form V̂ x

V̂ x Z
Vxffiffiffiffi
gl

p Z
ffiffiffiffiffi
Fr

p
: (3.1)

This is an alternative form (though resulting in
numerically different values) of the Froude number
with the benefit of scaling linearly with speed.
Thus, the preferred walk–run transition speed for
bipeds occurs at a Froude number (expression (1.1))
of around 0.5, or a non-dimensionalized velocity
of around 0.707. In both cases, the absolute limit
to walking as an inverted pendulum occurs at a
value of 1.

Frequency is normalized using the frequency
expected for a pendulum of length l swinging over
small angles. It is important to note that this is not an
Biol. Lett. (2005)
accurate model of the swing leg, which swings over
large angles, and is connected to a moving and
accelerating hip. However, it does provide a useful
comparison and is presented to allow a qualitative
impression of the frequency of the swing leg com-
pared with approximate passive conditions. The
normalized step (or swing) frequency, f̂ , is given by

f̂ Z fp

ffiffiffi
l

g

s
: (3.2)

This indicates the step or swing frequency as a multiple
of the pendulum frequency for a leg of length l.

In order to achieve walking as an inverted pendu-
lum at close to FrZ1, the swing leg must recover
at many times the passive swing frequency for a
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pendulum of length l. High step frequencies can be
achieved by two means: (i) a functional reduction in
the pendulum length of the swing leg by mass-
redistribution and (ii) driving of the swing leg by
muscular and elastic effort. Pendulum mechanics
indicate that reduction in the functional swing-leg
length, through evolutionary, developmental or beha-
vioural (including knee and ankle bending) activity,
has only a limited potential effect: a doubling of the
frequency requires a quartering of the leg length.
‘Driving’ a swing leg above its passive swing fre-
quency is costly. In terms of kinetic power require-
ments, the cost of oscillating a mass is proportional to
F2f3. Thus, independent of size and gravity, similar
issues determine the relationship between swing-leg
frequency and take-off avoidance.

One implication of this walking model is the
identification that foot contact with the ground is
least secure at the beginning and end of stance. Thus,
the mechanism by which mechanical energy is con-
tributed to the walking system may be influenced by
the requirement to maintain good contact with the
ground throughout stance. One (but not the only;
Kuo 2002) benefit of powering with gastrocnemius
activity and plantar flexion (ankle extension) towards
the end of stance may be to provide a compressive
force (or lengthening of the leg) between the foot and
the ground at the instant when, left to passive
vaulting, foot–ground contact forces would be at a
minimum.

It should be noted that the possibility of walking
does not necessarily indicate that it is the most
desirable gait for a given speed and that the region
indicated as achievable by a vaulting inverted pendu-
lum (figure 2) does not provide strict limits to walking
parameters. For instance, race-walkers certainly oper-
ate above the velocity predicted, even for the extreme
case of FrZ1. However, outside this region the
passive mechanism of inverted pendulum KE–PE–KE
energy transfer (Cavagna et al. 2002) must become
compromised and the use of spring-like mechanisms
(a running gait) might become energetically favour-
able. In conclusion, provided deviation from inverted
Biol. Lett. (2005)
pendulum mechanics and high swing-leg frequencies
are both costly, this model indicates a realistic
explanation for why the observed walk–run transition
speed is well below FrZ1.
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